Part Number Hot Search : 
HCTS245K ATP22AS MAX323 VRE101C SMBJ10A RFP9140 RC288 2SC181
Product Description
Full Text Search
 

To Download LR7821 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 4/5/04 irLR7821 irlu7821 hexfet   power mosfet notes   through  are on page 11 applications benefits  very low rds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use d-pak irLR7821 i-pak irlu7821 v dss r ds(on) max qg 30v 10m 10nc 
absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation  w p d @t c = 100c maximum power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jc junction-to-case ??? 2.0 r ja junction-to-ambient (pcb mount)   ??? 50 c/w r ja junction-to-ambient ??? 110 -55 to + 175 75 0.50 37.5 max. 65  47  260 20 30
 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 23 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 7.5 10 m ? ??? 9.5 12.5 v gs(th) gate threshold voltage 1.0 ??? ??? v ? v gs(th) gate threshold voltage coefficient ??? -5.3 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 46 ??? ??? s q g total gate charge ??? 10 14 q gs1 pre-vth gate-to-source charge ??? 2.0 ??? q gs2 post-vth gate-to-source charge ??? 1.2 ??? nc q gd gate-to-drain charge ??? 2.5 ??? q godr gate charge overdrive ??? 4.3 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 3.7 ??? q oss output charge ??? 8.5 ??? nc t d(on) turn-on delay time ??? 11 ??? t r rise time ??? 4.2 ??? t d(off) turn-off delay time ??? 10 ??? ns t f fall time ??? 3.2 ??? c iss input capacitance ??? 1030 ??? c oss output capacitance ??? 360 ??? pf c rss reverse transfer capacitance ??? 120 ??? avalanche characteristics parameter units e as single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 65  (body diode) a i sm pulsed source current ??? ??? 260 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 26 38 ns q rr reverse recovery charge ??? 15 23 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol v gs = 4.5v, i d = 12a  ??? v gs = 4.5v typ. ??? ??? i d = 12a v gs = 0v v ds = 15v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c clamped inductive load v ds = 15v, i d = 12a conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  conditions 7.5 max. 230 12 ? = 1.0mhz v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 16v v gs = 20v v gs = -20v
 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 2.0 4.0 6.0 8.0 10.0 v = 15v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 175 c j t = 25 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 r , drain-to-source on resistance (normalized) ds(on) v = i = gs d 10v 65a 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v t j , junction temperature (c)
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 175 c j t = 25 c j 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 024681012 q g total gate charge (nc) 0 1 2 3 4 5 6 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 16v i d = 12a
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 60 70 t , case temperature ( c) i , drain current (a) c d limited by package 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a fig 10. threshold voltage vs. temperature
 6 www.irf.com 25 50 75 100 125 150 175 0 200 400 600 800 1000 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 4.9a 8.5a 12a fig 13. maximum avalanche energy vs. drain current d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15. gate charge test circuit fig 14. unclamped inductive test circuit and waveform t p v (br)dss i as fig 16. switching time test circuit fig 17. switching time waveforms r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v vgs v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - 2 3 4 5 6 7 8 9 10 v gs , gate -to -source voltage (v) 0 5 10 15 20 25 30 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 15a t j = 125c t j = 25c fig 12. on-resistance vs. gate voltage
 www.irf.com 7 fig 18.       for n-channel hexfet   power mosfets 
   ?  
    ?      ?            + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 19. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
     
 8 www.irf.com control fet  

   

     
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f  ?   1  ?  + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic
 www.irf.com 9  

   0       
 -  .  

 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1 .02 (.040) 1 .64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982 . 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006).     !   
               
       
    
     
  
     
    
           
                             !  
     
  
  
 10 www.irf.com  
   0       
 -  .  
  6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982 . 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions show n are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2 .28 (.090) 1 .91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018)           
     
  
      "   
        
            
            
                            !  "  
     
  
     

 www.irf.com 11   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 3.2mh r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%. 
 calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.  

  0       
 -  . data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/04 tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of LR7821

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X